

Comparative analysis for comfort, passive heating and cooling strategies in Madagascar

Authors: Nina CONTI

E-mail: nina.conti1@gmail.com

Supervisor: Pr. Shady ATTIA

Address: Building Design Lab (SBD)

Quartier Polytech 1 Allee de la Decouverte 9 4000 Liege, Belgium www.sbd.ulg.ac.be Tel: +32 43.66.91.55

Fax: +32 43.66.29.09

ABSTRACT

Madagascar has been classified into 7 zones. One city in each zone is used to study comfort and see how to improve it using passive heating and cooling strategies.

KEYWORDS

Passive strategies, Thermal comfort, Bioclimatic Chart, Composite Climate, Madagascar

PROBLEM

Malagasy want to construct houses using bioclimatic design but local climate studies are insufficient and the actual thermal comfort model are proven not suitable for hot and humid countries. Therefore we want to use a new tool for climate analysis to fix thermal comfort boundaries for the local climates and find design solutions by cooling and heating passives strategies.

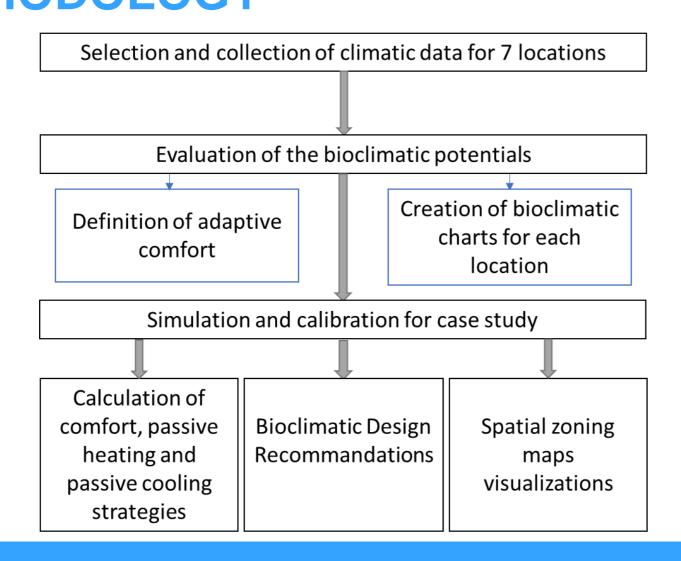
OBJECTIVE / HYPOTHESIS

Aim: To develop bioclimatic charts for 7 locations within a composite climate zone in Madagascar.

Objective: To derive spatial distribution maps for thermal comfort and passive heating and cooling strategies for the 7 different locations within the composite zone.

AUDIENCE

Urban designers, environmental architects, engineers, municipal officials, sustainability experts.

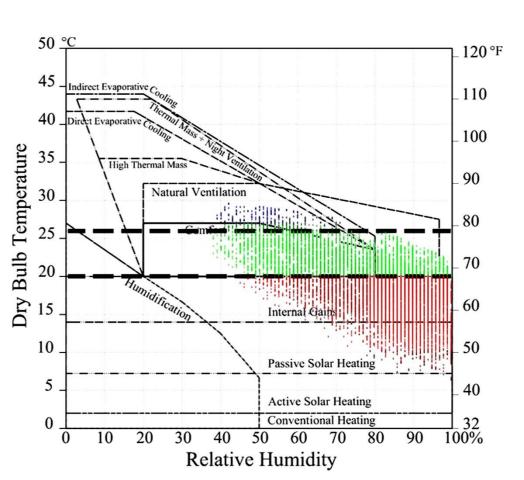

RESEARCH QUESTION

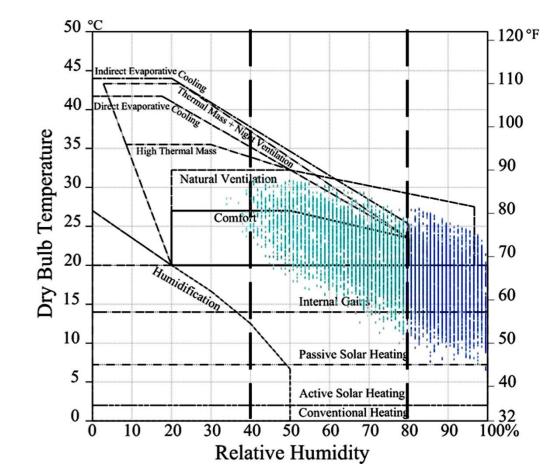
How can we improve comfort in Madagascar using passives heating and cooling strategies?

ORIGINALITY

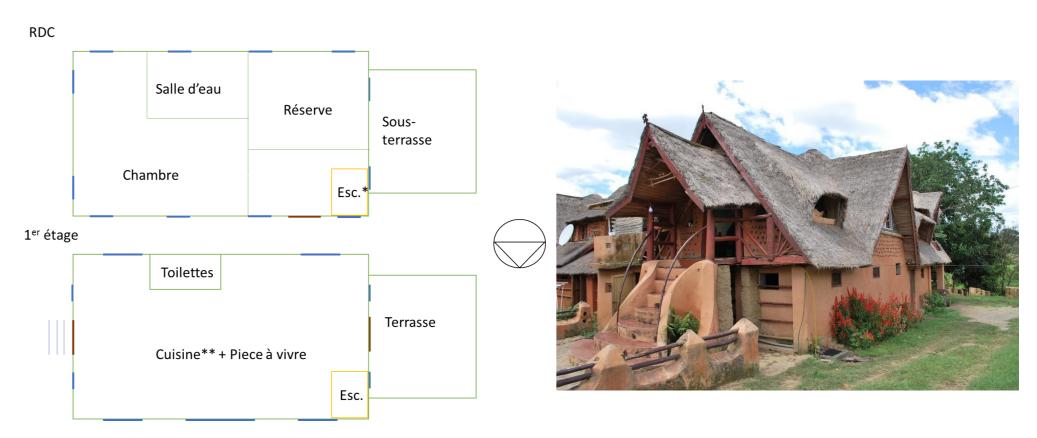
- Using a new tool for climatic analysis.
- Same study than in India and in Vietnam but for a country with a hot and humid climate differentiated into 7 climatic zones.

METHODOLOGY




RESULTS

Ville	Zone	Coordonnées	Altitude (m above MSL)
Tsihombe	1	25.19 S 45.29 E	150
Fianarantsoa	2a	21.27 S 47.05 E	1200
Maintirano	2b	18.24 S 44.06 E	12
Tuléar	3a	23.21 S 43.40 E	11
Antananariv o	3b	18.54 S 47.31 E	1276
Toamasina	4	18.08 S 49.24 E	12
Ambatondra zaka	5	17.50 S 48.25 E	800


Zones	Characteristics	Locations
1	Low altitude	North and South
	>23°C average	plains
	22-23000 KJ/m²/day	-
2 a	High altitude	Central Highlands
	<15 - 23°C average	
	21-22000 KJ/m²/day	
01	Low altitude	O and Mark
2b	23 - >27 °C average	South-West
	>23000 KJ/m²/day	Coast
2-	Madium Altituda	0 41- 10/ 4
3a	Medium Altitude	South-West
	<27°C average	
	>23.000KJ	
01	Medium Altitude	=
3b	<23°C average	East Highlands
	<21000KJ/m²/day	
4	Low Altitude	East Coast
	>23 - 27°C average	
	<21000 KJ/m²/day	
5	Low to Medium altitude	East Coast till
	>23-27°C average	Highlands
	<20000KJ/m²/dav	J

Zones and locations characteristics

Bioclimatic charts for 1 of the 7 locations (Relative Humidity and Air Temperature)

Model and plans of the Base Case

CONCLUSION

- We chose the comfort model ASHRAE -55 Adaptive as the most suitable for the 7 different zones of Madagascar.
- We create maps for thermal comfort and passive strategies
- With this study, other building typologies can be evaluated in order to understand heating and cooling energy requirements based on climate variation and location. It also can be conducted in other climatic zones of Madagascar.

RESOURCES

Attia, S., Lacombe, T., Rakotondramiarana, H. T., Garde, F., & Roshan, G. R. (2018). Analysis Tool for Bioclimatic Design Strategies in Hot Humid Climates. *Sustainable Cities and Society*.

Kishore, K. N., & Rekha, J. (2018). A bioclimatic approach to develop spatial zoning maps for comfort, passive heating and cooling strategies within a composite zone of India. *Building and Environment*, 128, 190-215.

